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Dipolar effects on soliton dynamics on a discrete ferromagnetic chain
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The contributions of dipole-dipole interactions to the dynamics of solitons on a one-dimensional discrete
easy-plane Heisenberg ferromagnet, in which the biquadratic exchange interactions are taken into account in
addition to the Zeeman energy, the uniaxial anisotropy, and the exchange energy, are studied numerically. The
results of a numerical simulation of the dynamics of a single soliton, as well as collision between a soliton-
antisoliton pair, indicated that the energy-velocity curves for the solitons in the ferromagnetic chain present the
signature of five different branches corresponding to different types of nonlinear elementary excitations in the
chain.
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I. INTRODUCTION

Many problems of mathematical physics, condens
matter physics, mechanics of solids or fluids, and biolog
structures lead to the consideration of nonlinear equat
having variables that are all continuous, partially discrete
all discrete. Soliton equations belong to a special class
these nonlinear equations@1#.

In addition, the discreteness makes the properties of
system periodic@2#, so that due to the interplay between t
discreteness and nonlinearity, new types of nonlinear exc
tions, which are absent in continuum models, may be p
sible in the system. This direction is rather new because u
recently the main interest was in systems with strong c
pling limit between spins or atoms, where a continuum
proximation is generally applied in the theoretical mod
revealing soliton solutions@3#. However, the continuum ap
proximation, and thereby following exact soliton solutio
are in many cases highly idealized.

From fundamental physical interest, the idea of a discr
nature has considerably improved our understanding of
effect of discreteness on topological solitons@4–8# and non-
topological solitons@9#, classical thermodynamic propertie
@10–13#, modulational instabilities@14–16#, wave-collapse
phenomena@17,18#, intrinsic localized vibrational state
@19–21#, diffusion in discrete nonlinear dynamical system
@22#, and self-induced gap solitons@23,24#.

Discrete models are also of interest for practical appli
tions, such as systems of coupled optical wavegui
@14,16,25–29#, models for energy transport in biophysic
systems proposed by Davydov@30#, discrete models of
sheibe aggregations@31#, electrical arrays@32–34#, systems
that model the dynamics of DNA@35–38#, discrete reaction-
diffusion models to study propagation failure in myocard
tissue@39,40#, for myelineated axons@41#, discrete soliton
equations related to cellular automata@42#, discrete quantum
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motors @43#, and discrete easy-plane ferromagnetic ch
@44–46#. In the latter context, further investigations concer
ing the dipolar interaction contributions to the general pro
erties of soliton’s motion, as well as its modified profil
have been carried out in Ref.@47# using the long wavelength
approximation. In this case, dipolar interactions contribute
increase the critical magnetic field, the stability of the Sin
Gordon soliton, and also the soliton contribution to the s
cific heat@47#.

Assuming that the Heisenberg model for describing m
netic phenomena is inherently discrete, with lattice spac
being a fundamental physical parameter, Wysin, Bishop,
Kumar ~WBK! @45# studied the dynamics of a single solito
as well as the collisions between a soliton-antisoliton pair
numerical simulations, accounting for both the magne
field Be and the propagation velocityu of a soliton. WBK
showed that the solitons are multibranched. More precis
the dynamics of a single soliton can be classified into th
different branches, while that of collisions between a solito
antisoliton pair consists of four major branches.

In the present paper, using the ideas and formal appro
of WBK, we investigate the dipolar interaction contribution
on the dynamics of solitons of a discrete ferromagne
chain.

The paper is organized as follows. In Sec. II, the mo
Hamiltonian is introduced and a set of coupled nonline
differential-difference equations of spin dynamics is derive
In Sec. III, some numerical results on the creation of solito
in a classical easy-plane discrete ferromagnetic chain un
weak dipolar interactions starting from an initial Sin
Gordon~SG! soliton are presented, and their stability und
collision is verified. Section IV is devoted to the conclusio

II. THE MODEL

A. Equations of motion

The model we deal with in this section is a chain of cla
sical spin interacting both by short-range nearest-neigh
ferromagnetic interactions and long-range dipolar inter
tions. It is also subject to an anisotropic field perpendicu
©2002 The American Physical Society13-1
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to the chain direction and an in-plane applied magnetic fie
Hence, the following Hamiltonian describes it:

H52J(
i

SW i•SW i 112gmBBe(
i

Si
x1A(

i
~Si

z!2

2aJ(
i

~SW i•SW i 11!21
1

2
~gmB!2

3(
i i 8

FSW i•SW i 8

r ii 8
3 2

3~SW i•rW i i 8!~SW i 8rW i i 8!

r ii 8
3 G , ~2.1!

where the sums run over the lattice sites separated by a
tancea0 apart along thez axis, and whereSi

d (2d5x,y,z) is
the d component of the spin vectors on thei th site. The first
term in the Hamiltonian~2.1! represents the Heisenberg e
change energy, whereJ.0 is the short-range neares
neighbor exchange coupling constant. The spin may also
placed in an external field (Be) directed along thex axis
leading to the second term representing the Zeeman en
where the quantitiesg andmB are the Lande´g factor and the
Bohr magneton, respectively.

The third term is the single ion uniaxial anisotropy ener
due to the crystalline field. It constrains the spin to lie in
plane perpendicular to the chain axis.A is the uniaxial
crystal-field anisotropy parameter.

The fourth term represents the biquadratic isotropic
change interactions, which should be considered for a h
spin system, withS>1 @48#. The parametera measures the
strength of the biquadratic exchange, in the classical appr
mation. Adler gave a discussion of these biquadratic
change interactions through an extensive review of exp
mental results, which establish the importance of this term
a variety of compounds@49#. The necessity of including suc
a term goes back to Schro¨dinger, and Anderson gave its in
terpretation in terms of a superexchange mechanism@50#.
Kapor and Skrinjar gave another interpretation of the biq
dratic exchange interactions in terms of three-spin excha
interaction @51#. For a ferromagnetic ground state, the p
rametera has to satisfy, forS51, 0,a,1 and for a spin
with S.1, the condition is 22/@S(2S23)#,a,2(S
11)/S2 @48#.

The last term of Hamiltonian~1! is the dipole-dipole in-
teraction energy between the magnetic moments of the
stituent atoms, wherer i i 85ur¢i2r¢i 8u is the distance betwee
two different magnetic sitesi and i 8. An important implica-
05661
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tion of this last term on the critical dynamics of the uniax
ferromagnet has been elucidated using the renormaliza
group method@52#. In contrast with the short-range exchan
interaction, the dipolar interaction is long ranged and th
dominates the asymptotic critical behavior of the ferroma
net @53#. These interactions also introduce an anisotropy
the spin fluctuations longitudinal and transverse to the w
vector.

At sufficiently low temperaturesT!(AJ)1/2, while ne-
glecting quantum effects, i.e.,A/JS(S11)!4p2, the spins
can be considered as classical vectors where their orie
tions are parametrized by the spherical coordinates as

SW i5S@cos~u i !cos~w i !,cos~u i !sin~w i !,sin~u i !#, ~2.2!

where2p/2<u i<p/2 is the excursion angle of magnetiz
tion from (Si

x ,Si
y) plane, and 0<w i<2p represents the azi

muthal angle ofSW i in the same plane.S is the magnitude ofSW i
and the dynamics of these spins can be described by
undamped Bloch equation

\
dSW i

dt
5SW i3FW i . ~2.3!

Then, using the following relation for the effective field:

FW i52
]H

]SW i

. ~2.4!

It comes that

FW i5JSW i 11~112aSW i•SW i 11!1JSW i 21~112aSW i•SW i 21!

22AS1
zeW z1gmBBeeW x1

1

2
~gmB!2

3(
i 8

F SW i 8

r ii 8
3 2

3~rW i i 8!~SW i 8•rW i i 8!

r ii 8
3 G , ~2.5!

whereeW x(eW z) is the unit vector along thex axis ~the z axis!.
FW i represents the effective field acting on each spin, wh
SW i3FW i represents the torque on the spin at the sitei, respec-
tively. So, replacing Eqs.~2.2! and ~2.5! into Eq. ~2.3!, we
obtain
dw i

dt
5JStan~u i !$112aS2@sin~u i !cos~u i 11!cos~w i 112w i !1cos~u i !sin~u i 11!#%@cos~u i 11!sin~w i 112w i !

2cot~u i !sin~u i 11!#1JStan~u i !$112aS2@sin~u i !cos~u i 21!cos~w i 212w i !1cos~u i !sin~u i 21!#%@cos~u i 21!

3sin~w i 212w i !2cot~u i !sin~u i 21!#12AS2 sin~u i !1gmBBe tan~u i !cos~w i !

1
1

2
~gmBS!2(

i 8

sin~u i 8!

r ii 8
3 $@cos~u i 8!sin~w i 8!1sin~u i 8!#@cos~w i 8!1sin~w i 8!#%, ~2.6!
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du i

dt
5JS$112aS2@sin~u i !cos~u i 11!cos~w i 112w i !1cos~u i !sin~u i 11!#%cos~u i 11!sin~w i 112w i !

1JS$112aS2@sin~u i !cos~u i 21!cos~w i 212w i !1cos~u i !sin~u i 21!#%cos~u i 21!sin~w i 212w i !2gmBBe sin~w i !

1
1

2
~gmBS!2(

i 8
S cos~w i 8!

r ii 8
3 $@cos~u i 8!cos~w i 8!1sin~u i 8!#@cos~w i 8!1sin~w i 8!#%

2
sin~w i 8!

r ii 8
3 @cos~u i 8!sin~w i 8!1sin~u i 8!# D . ~2.7!
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The set of coupled nonlinear differential-difference equ
tions ~2.6! and ~2.7! define the collective excitations for th
in-plane anglew i and the out-of-planeu i . In the absence o
the biquadratic exchange and dipolar interactions, Etr
et al. @54# have shown that in the discrete ferromagnetic s
chain there may occur two essentially different static
plane soliton structures, one with its center located on a
tice site ~central-spin configuration!, and the other with its
center located in the middle between the two neighbor
lattice sites~central-bond configuration!.

B. Influence of the dipolar interactions in the continuum
approximation

Meanwhile the model under study is discrete, it is imp
tant to derive the continuum limit, because it allows est
lishing the analytical calculation of the influence of the d
polar interactions on some critical parameters, so that w
further numerical computations, some comparison could
done. Attention is then focused on the study of widely s
tially extended solutions where the variations in space
time are slow, which allow us to use the continuum lim
approximation. Then we can obtain the following perturb
SG equation@47#:

]2w

]t22
]2w

]Z2 1b sin~w!

5bdFcos~2w!2S sin~2w!
]2w

]Z2 1S ]w

]ZD 2

cos~2w! D G ,
~2.8!

and

u5wt , ~2.9!

where the dimensionless quantities are

t5
2ASt

\
, Z5S 2A

J~112aS2! D
1/2 z

a0
, ~2.10!

b5
gmBBe

2AS
, bd5

gmBHd

2AS
, ~2.11!

and hereHd54pNd(N/V)gmBS is the demagnetizing field
due to the dipolar interactions andNd being the demagnetiz
05661
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ing factor, andV is the volume in the case of a cubic samp
but here since we are studying a single spin chain, it sta
for the chain length. In rescaling the dimensionless len
variablesZ, as given in Eq.~2.10!, it appears as the term
J(112aS2). As shown by Ferrer@55#, this term is the con-
sequence of the renormalization of the exchange ene
which is the only effect of the biquadratic exchange ene
in the sine-Gordon limit. Without the biquadratic exchan
and dipole-dipole interactions, that isbd50, Mikeska has
shown that the dynamics of solitons in a ferromagnetic s
chain is described by the SG equation@56#. In other words,
the ferromagnetic solitary excitations are composed of ap
kink in w and a pulse inu which has amplitude proportiona
to the soliton speed. Later, Kumar@57,58#, Magyari and Tho-
mas@59# have already attracted the attention on the valid
limits of the SG approximation for the ferromagnetic doma
walls. In the absence of dipolar interaction, a linear stabi
analysis of a static SG soliton profile shows that for the
plied magnetic fieldBe>Bec52A/3 instability occurs. For
this critical value of the applied magnetic field, the corr
sponding critical value of the reduced magnetic field
bc(0)5 1

3 andbc(0)2bc(u)'u2/3, whereu is the soliton ve-
locity. Then the presence of dipolar interactions in the rig
hand side of Eq.~2.8! leads to the new instability criterion
@47#,

b>b̂c5
1

3
1a1g~p! ~2.12!

and

b̂c~0!2b̂c~u!'x~u6u0!2/3, ~2.13!

where

a15
HdS

Be
,

g~p!5
1

18F10.1p3112p22
15p

2
196p ln~2!148G'36,

~2.14!

ũ05
c̃1bd

p
, x5

6c4

c2
S c1

8c4
D 2/3

, ~2.15!

c̃15
8p

b1/2, c256bc
1/2, c45

4

5
bc

1/2, c15p.

~2.16!
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We can also calculate the soliton effective massm* for b

,b̂c ; for small velocitiesu, the stability analysis yields the
energyE(u) of the moving soliton as

E~u!5E~0!1
1

2
m* u2, ~2.17!

with

m* 5
bbcA~l!

b̂c2b
. ~2.18!

Here,l52AS/gmBBe , andb̂c , which is the lowest value o
b given in Eq.~2.12!, is the new critical reduced field whe
the dipolar interactions are taken into account.A(l) is a
positive constant for which expression is derived in the A
pendix. Also keep in mind thatbc is the critical field in the
absence of the dipolar interactions. Forb,b̂c and E(u)
2ESG(0)!ESG(0), the soliton is SG-like with effective
mass given by Eq.~2.18!. This branch, which has been re
ferred to as branch I by WBK, terminates at a maximu
velocity um(b). The branch II is related to the soliton prop
gation for E.E(um), where the velocityu decreases with
increasing energyE, leading finally to a second static solito
with an energy higher thanESG(0) and with um5u0 such
nu
ro
b

e

t
n

th
o

05661
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that E(u0) is the maximum energy for a soliton. Using th
ansatz of Liebmannet al. @60#, we have been able to calcu
late the field dependence of the energy of this second s
soliton and the corresponding excursion angleu0 as

E5ESG~0!S 2

3
1bD S 1

3
1

2

9bD 1/2

, ~2.19!

sin2S u0

2 D5b̂c2b. ~2.20!

Then in this region the results obtained in Eqs.~2.19! and
~2.20! are identical to those of Liebmannet al. @60#. We
observe, however, that the only difference is that there
some kind of renormalization in Eq.~2.19! on the expression
of the soliton rest energyESG(0) given in Ref.@47#. Finally,
for the other branches, the solitons are moving with a ne
tive velocity ~relative to SG!. These regions correspond to a
inverted parabola. The effective mass of the solitons is gi
by @45#

m** 5
]~L2E!/]um

]2E/]um
2 U

u0

, ~2.21!

where the negative expression of a Lagrangian is given
L~u,w!5E dZH F1

2
~uZ

21wZ
2!1

cos2~u!

2
2b cos~u!cos~w!2wt sin~u!G1bd cos~2u!@2wZ

2 sin~2w!1sin~2w!#J .

~2.22!
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Here,Z andt are defined in Eq.~2.10!. From Eqs.~2.21! and
~2.22!, we obtain

m** 5
2pbd~bc /b!1/2

b̂2b
for b.b̌c . ~2.23!

and

m** 52
pbd~bcb!

b̂c2b
for b,b̌c . ~2.24!

Moreover, in the absence of dipolar interactions, the
merical simulations of soliton dynamics on a discrete fer
magnetic chain, without any SG assumptions, performed
WBK have revealed a rich behavior such as the existenc
a multibranched single-soliton excitation structure.

III. NUMERICAL RESULTS

In this section, we report our numerical results. In order
check the dynamics of a single soliton as well as collisio
between a soliton-antisoliton pair, we solve numerically
set of coupled nonlinear differential-difference equations
-
-
y
of

o
s
e
f

motion ~2.6! and ~2.7! with a fourth-order Runge-Kutta
scheme, so that the continuum approximation is not assu
in the numerical scheme. The time step@typically 0.03 in
units (JS)21] is chosen to preserve the total energy of t
spin chain to an accuracy of about 0.01% during the co
plete run. In the numerical simulations, we consider a sys
involving N spins ranging betweenN5100 and 200 spins
with periodic boundary conditions at the two ends of t
chain in the case of the collision, but for the propagation o
single SG soliton we include an offset of 2p at the end of the
spin chain. The single SG soliton and pairs of SG solito
antisoliton provide initial conditions here.

A. Single-soliton dynamics

In order to study soliton properties in the discrete latt
in presence of dipolar interactions, we investigate num
cally the discrete-lattice time evolution of soliton configur
tions. Approximate initial solutions of Eqs.~2.6! and ~2.7!
are the SG solitons

wSG54 arctan~expgAb@Z2uSGt!#, ~3.1!

uSG522gAbuSGsech@gAb~Z2uSGt!#, ~3.2!
3-4
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FIG. 1. Time development of an exact solution of the continuum equation of motion in a discrete Heisenberg chain.~a! Without dipolar
interactions;~b! with dipolar interactions. Stability of a moving soliton, transition to a new configuration due to discreteness effects pr
by increasing the magnetic field.~c! Without dipolar interactions;~d! with dipolar interactions.
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whereg5(12uSG
2 )21/2 is the Lorentz contraction factor an

uSG is the velocity. Under this assumption, the degree
discreteness is controlled by the parametergAb. The smaller
the gAb, the better the continuum approximation. Let
introduce, as an example, the following set of parame
corresponding to the CsNiF3 structure, namely@57#: J
523.6 K, A54.5 K, andS51. Using the SG solitons@see
Eqs. ~3.1! and ~3.2!# as initial conditions, we have verifie
their stability on the discrete lattice. Let the reduced m
netic field be chosen at the value ofb50.024. The result of
the numerical integration of the system of equations of m
tion ~2.6! and ~2.7! is shown in Figs. 1~a! and 1~b!, respec-
tively, where we observed that a soliton moving with a n
malized constant speeduSG50.5C0 along the discrete chain
and with a constant profile, whereC0

252JSA(112aS2)a0
2

is stable when dipolar interactions are absent@see Fig. 1~a!#
or present@see Fig. 1~b!#. In some figures, the cases of n
05661
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dipolar interactions are also shown for comparison. With
creasing the reduced magnetic field up to a value ob
50.15, and taking the normalized input velocity asuSG

50.5C0 , the degree of discreteness due togAb increases
and more magnons are generated with no dipolar interact
@see Fig. 1~c!#. Therefore the presence of magnons is e
dently associated to the discreteness of the chain. More
more magnons are radiated in the presence of dipolar in
actions, and the kink shape of the waves disappears prog
sively, such a situation can be seen in the sites 20< i<40 of
Fig. 1~d!.

For further investigations of the dynamics of a single so
ton in the presence of magnetic long-range interactions,
plot the observed average velocityu of the soliton as a func-
tion of the initial velocityuSG for different magnetic fields.
For a given magnetic field, the average velocity was obtai
by averaging the instantaneous velocity of the soliton dur
3-5
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FIG. 2. ~a! Mean kink effective velocity~u! againstuSG ~Sine-Gordon kink velocity! when the dipole-dipole interactions are absent
different value of the reduced magnetic fieldb; A50, B50.05, C50.10, D50.15, E50.19, F50.24, G50.3, H50.36. ~b! When the
dipolar interactions are present for the same value of the magnetic field.
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its propagation in the lattice. The results of our computatio
are shown in Figs. 2~a! and 2~b!, respectively. At first, three
results are mentioned:

~i! In Fig. 2~b!, the curveA corresponds to the case of
soliton propagation when the magnetic field is nil. In th
situation, some perturbing forces are induced in the sys
by the presence of the dipolar interactions. Their main eff
is to constrain the resulting wave to propagate in the oppo
direction to that of the initial condition with small velocities
Hence, in this case, the average velocity of the propaga
kink begins by a negative value. It is only when the init
conditions attain a certain minimal velocity that the effecti
velocity of the resulting wave starts increasing. This can
understood in the sense that, when the initial condition
introduced in the chain with a certain initial momentum, t
resulting wave is suddenly subject to competition between
momentum and the perturbing forces. Then the effective
locity of the resulting wave is negative and does not incre
when the initial momentum of the kink is less than the p
turbing forces. But when this initial momentum is greater
comparable to the perturbing forces, the effective velocity
the resulting wave increases. Therefore, due to the ab
mentioned competition that leads to a permanent balance
tween the initial momentum of the initial condition and th
perturbing forces, the effective velocity of the propagati
kink while increasing exhibits a nonlinear behavior. This
different from the linear behavior observed in the curveA of
Fig. 2~a!, where dipolar interactions are absent.

~ii ! In the presence of dipolar interactions, the avera
velocity u is always less thanuSG. In curvesB, C, D, E, and
F, the velocityu reaches a critical maximumuc and then
begins to decrease with increasinguSG. This maximum de-
creases with increasing magnetic field@Fig. 2~b!#. Figure
05661
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2~a!, which corresponds to the results obtained by WBK@45#
in the case of no dipolar interactions, is also shown here
comparison. The field dependence ofuc is consistent with
the result of Nguenanget al. @47# as shown in Eq.~2.13!.

~iii ! In curvesG andH of Fig. 2~b!, the average velocity
decreases gradually down to a value ofu/C0520.75 and
the initial condition of aboutuSG/C050.7, then for the initial
condition’s velocity greater thanuSG/C050.7, instead of de-
creasing as in Fig. 2~a!, it starts increasing. Such a behavi
comes from dipolar effects in the discrete model that crea
new nonlinear excitations in the system for high magne
fields with increasing speed.

Figure 3 illustrates the agreement with Eq.~2.13!, and the
difference between our result~Fig. 3, curve b! and that of
WBK ~Fig. 3, curve a!. From this we also note that the re
duced critical magnetic field is always greater when the
polar interactions are present~curve b! than when they are
absent~curvea!. For instance, we have in the static case~i.e.,
u50) b̂c50.35, whilebc50.33.

Figure 4 presents the curves of the energy in terms of
ratio DE/E0 as a function of the magnetic field for whic
DE5E2E0 , andE05E for u50 is the rest energy of the
soliton. A result that appears surprising at a first glance w
looking at Fig. 4 is that, by comparing energies for discr
chain with no dipolar interactions~see Fig. 4, curvea! and
the case in which dipolar interactions are present~see Fig. 4,
curveb!, we observe for the curvesa andb that the energy
decreases gradually with increasing the magnetic field,
while decreasing in the curveb, the energy displays a non
vanishing behavior. However, one must keep in mind that
energy recorded here is that of the maximum mean propa
tion velocity of the soliton for each field. And that, as show
3-6
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FIG. 3. Maximum mean
propagation velocity against mag
netic field; curve a is the case
without dipolar interactions; curve
b is the case with dipolar interac
tions.
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in curve G and H of Fig. 2~b!, as the magnetic field is in
creasing, its combination with dipolar energies in the syst
finally generates the nonlinear excitations with increasing
locity in the magnetic chain that would increase from th
negative values up to the positive one. Since the energy
responding to positive velocity is greater thanE0 , the energy
in Fig. 4, curveb, instead of decreasing down to the re
energyE0 with increasing magnetic field as in Fig. 4, curv
a, it decreases down to a minimal value that is greater t
the rest energyE0 of the soliton involving in a magnetic
chain without dipolar interactions.

Figure 5 shows the field dependence of the maxim
angle of excursionumax. Figure 5, curvea corresponds to the
case of no dipolar interactions, while Fig. 5, curveb illus-
trates the case with dipolar interactions. The curvea de-
creases with increasing magnetic field, while the curveb
spread out over many extrema leading then to one m
stable region than in the case of the curvea. Even in this
figure, the curveb ~continuous line! clearly indicates the
same value of the critical reduced magnetic fieldb̌c50.35,
which can be obtained here for the second value ofumax
which is nil. Note that here the relative size ofHd with the
applied magnetic field isHd /Be'0.0005 therefore fors
51, a150.001 @47#. This leads to the value of the critica
field obtained from the analytical calculation@see Eq.~2.12!#
of b̂c'0.37, which is little bit greater than that of the n
merical computation. However, this critical magnetic field
bc5 1

3 '0.33, for both numerical and analytical calculatio
when the dipolar interactions are absent.

Figure 6 displays the energy spectrum in terms of the r
05661
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DE/E0 against mean kink velocityu/C0 for different mag-
netic fields.

The results obtained by WBK are shown in Fig. 6~a!,
while Fig. 6~b! corresponds to the discrete chain in whi

FIG. 4. Energy as function of magnetic fieldDE/E05(E/E0)
21; curvea—in the absence of dipolar interaction; curveb—in the
presence of dipolar interactions.
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FIG. 5. Stability limit of mov-
ing ~out-of-plane! soliton in the
umax, b plane; curvea—in the ab-
sence of dipolar interaction; curv
b—in the presence of dipolar in
teractions.
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dipolar interactions are taken into account. Figures 6~c! and
6~d! are a zoom that we made from Figs. 6~a! and 6~b!,
respectively. From these curves one can see that the so
motion could be classified into five branches according to
size of the out-of-plane angle. Figure 6~d! shows a first
branch~I! from point A to B for which the soliton energy
increases with its velocity. The energy-velocity relationsh
along this branch is qualitatively similar to the one given
the perturbed SG equation; therefore this branch is he
forth called the perturbed SG soliton branch. In the branc
~II !, ~III !, and ~IV !, first deviations from the perturbed S
soliton begin to be found and an increase in energy of
solitons results in a decrease of the modulus of their veloc
As pointed out by WBK@45#, this first deviation is due to
discreteness effect of the spin chain. In the branch~V! @see
Fig. 6~d!#, the second deviation from the former is foun
This is attributed to the discrete dipolar effects. We not
that contrary to the case of Fig. 6~c!, the first deviation ap-
pears for dynamical soliton instead of a static soliton a
there is a new deviation that appears only for high-field v
ues, which can be seen at pointD9 in Fig. 6~d!. The analyti-
cal treatment of this later phenomenon shall be considere
a future publication.

B. Kink-antikink collision

This section presents the results of numerical calculati
for classical kink-antikink collision processes in a on
dimensional discrete easy-plane Heisenberg ferromag
The results obtained for numerical simulations of a sing
soliton dynamics gave valuable qualitative descriptio
Quantitative description needs to simulate kink-antiki
head-on collisions at different range of magnetic fie
through the discrete equations of motion~2.6! and~2.7!. The
lattice size isN5200, and the parameters of the model ha
05661
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been chosen so that the kink and antikink width are la
with respect to the lattice spacing~typically 10–20 lattice
sites! to avoid discreteness effects. Using the same algori
as for the case of single-soliton dynamics, we also mad
numerical analysis of a soliton-antisoliton head-on collisio
Only the results of the cases concerned by the introductio
the dipolar interactions shall be presented. The solit
antisoliton (SS̄) pair collision is initiated by starting with a
SGSS̄pair that is allowed to evolve in time according to th
equations of motion~2.6! and ~2.7!.

We examine the evolution of an initial condition,

w i52p2„4 arctan$exp@gAb~ i 2n12uSGt !#%

14 arctan$exp@2gAb~n22 i 1uSGt !#%…, ~3.3!

u i52gAbuSG„sech$exp@gAb~ i 2n12uSGt !#%

1sech$exp@2gAb~n22 i 1uSGt !#%…, ~3.4!

in which the kink and antikink are moving towards ea
other with the initial velocityuSG which can be interpreted a
the input energy. The parametersn1 and n2 , which are the
initial positions of the kink and the antikink att50, are fixed
at appropriate values so that the two solitons do not inter
with each other. Instead of obtaining four major regions
for the case of the ferromagnetic chain with no dipolar int
actions, we have obtained here five regions that are sum
rized as follows.

Region I. The region I is concerned with low applie
magnetic fieldsBe . The reduced field lies within the rang
0<b<0.10. In Figs. 7~a!–7~e!, we present a sequence of th
time evolutions of a kink-antikink head-on collision for no
malized velocitiesn150.4C0 ~kink! and n252n1 ~anti-
kink!, and for widths equal toL15L2510a0 . In the plot we
3-8
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FIG. 6. ~a! Discreteness effect on the energy spectrum with mean kink velocity for different reduced magnetic fieldb; A50, B50.05,
C50.10, D50.15, E50.19, F50.24, G50.3, H50.36. When the dipolar interactions are absent.~b! The same figure when the dipola
interactions are present.~c! A zoom in one of the curve of the dispersion curve of~a! in absence of dipolar interactions showing the differe
regions displayed by the magnetic chain.~d! A zoom in two curves~G andH! of dispersion curve of~b! in presence of dipolar interaction
showing the different regions displayed by the magnetic chain. This figure is presented to motivate the physical difference betwee
systems.
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present the in-plane and out-of-plane components of
spins at different propagation times, and we observed tha
collision of a pair of kink-antikink is quasielastic with infini
tesimal changes in the soliton forms. The in-plane com
nent of the spin displays a robustness property, whereas
out-of-plane component faces a little distortion of its profi
during the collision process. This collision process happ
as interpenetration into each other and finally leads to a
tual crossing of both of them. Numerical simulations sh
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that, even in the presence of dipole-dipole interactions in
range of magnetic field, the solutions of the continuum eq
tions for large width are also good solutions for the discr
medium. Hence, the soliton chosen here as initial condit
displays a particlelike behavior. It is also important to no
that at normalized low velocityuSG/C0,0.1, and mostly in
low field, the collision even leads to the formation of
breather, but when the reduced magnetic field is increase
b50.08, it is no longer possible to observe such a pheno
3-9
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FIG. 7. Collisions detail seen at a sequence of times corresponding to region I.b50.024 anduSG/C050.5.
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FIG. 8. Head-on collision for the region III.b50.16 anduSG/C050.4.
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FIG. 9. Head-on collision for the region IV.b50.27 anduSG/C050.4.
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FIG. 10. Head-on collision for a sequence of times for region V.b50.37 anduSG/C050.45.
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enon for normalized velocities less than 0.1. However, o
very high-normalized velocitiesuSG/C0.0.8 can lead to the
breather formation. This breather formation appears as
result of a colliding kink-antikink pair has been interpret
by WBK as a balance of the collision time versus ene
dissipation for the kink collective coordinate.

Region II. In this second region, the reduced magne
field fulfills the following condition: 0.10,b,0.16. Here,
instead of a bound state formation as it is the case when
dipole-dipole interactions are absent@45#, the kink-antikink
pair is reflected after the collision. This case has be
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checked forb50.13 anduSG/C050.5, for the external mag
netic field and the normalized velocity, respectively, but
will not present the figures here. So, due to periodic bou
ary conditions, after any collision at the middle of the cha
for example, they come out with a velocity of opposite si
and next, they face another collision at the end of the ch
An interesting effect appears for very small-normalized v
locity uSG/C0<0.1, where the kink-antikink pair is annihi
lated after the first collision. This is understandable as
result of the different soliton branches in the chain at ve
low applied magnetic field.
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Region III. In this region, we have 0.16<b,0.22. Since
the collision time is greater here than those for region II, a
I, the size of the chain ranges from 200 to 100. For illust
tion, we have chosenb50.17 and the normalized input ve
locity uSG/C050.3. In Figs. 8~a!–8~c!, we observe that afte
the collision, there is neither crossing and nor reflection,
system behaves as if it is pinned. In reality, they just s
together and form a pair of kink and antikink. Strictly spea
ing, such a phenomenon can be observe when the dip
interactions are absent only in region II for a certain value
the applied magnetic field and velocity@45#. The resulting
wave does not display internal oscillation during the simu
tion and there are only few radiation at the chain ends,
then deduce that, in this range of applied magnetic field,
inclusion of the dipole-dipole interactions in the model lea
to a zero frequency translational mode formation.

Region IV. Here, we have 0.22<b<0.32. The size of the
chain is reduced because the collision process is slower
in the case where the dipolar interactions are not includ
This is the second region in which we observe the reflec
phenomenon after any collision for the in-plane spin com
nent, whereas the out-of-plane component is flipped~see Fig.
9!. We also observe some fluctuations on the shapes
come from the scattering effect of the low amplitude ma
nons that are induced in the system by dipolar interactio
This reflection phenomenon indicates that the soliton
branch II can propagate and survive in this region.

Region V. In this region, the reduced version of the a
plied magnetic field fulfillsb>0.34. We observe in Fig. 10
that before the collision, as the soliton waves approach e
other, the amplitude of the in-plane spin componentw de-
creases while that of the out-of-planeu component increases
After the collision, the in-plane spin component complete
changes its shape to behave as a pulse with a flexure slig
oscillating. We deduced that it is a shock wave that com
from a partial restoration process that is induced in the s
tem by the dipole-dipole interactions. In other words, inclu
ing this long-range magnetic interactions lead us to the
that, initially from a kink-antikink profile, it follows that the
kink and antikink are annihilated through an interpenetrat
process. Next, due to a partial restoration process, there
pear a pulse shock wave that would continue the collis
process without changing. But, the out-of-plane spin com
nent just slightly changes its shape and the initial profile
rapidly reconstructed with greater amplitude.

IV. CONCLUSION

In conclusion, we have analyzed the nonlinear dynam
of the soliton structure taking the model of CsNiF3 material
as a particular example, in which the dipole-dipole inter
tions are taken into account. The different simulations of
soliton’s propagation point out that, in the presence of di
lar interactions, when the degree of discreteness is high
single SG soliton is more likely to fail to provide an appr
priate description of the soliton dynamics. We also note fr
these simulations that, when the degree of discreteness i
to high, the dipolar interactions that are added in the sys
permitted us to observe that the range of stability is rai
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through the critical field and the critical velocity, this ca
also be observed in the shape of the maximum value of
out-of-plane spin component vs the magnetic field. Thank
the numerical experiment, the energy against velocity pro
presents five region. The new region here leads to the g
eration of a shock wave that is stable under the collis
processes. These dipolar interactions are also responsibl
the nonvanishing behavior of the energy of the system w
the increasing magnetic field. From the results presen
above, it is concluded that the investigation of the dynam
of kink and their collisions comprises an interesting task
physics. Then it may result in a broadening of ordinary u
derstanding of several types of soliton interactions in qua
one-dimensional system, which are represented by the
main walls of a ferromagnet with uniaxial anisotropy a
dipolar interactions.
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APPENDIX

In order to find the expression of the constantA(l) in Eq.
~2.18!, we use the continuum approximation of the discre
system~2.6! and~2.7!. In the assumption of small velocitie
u, we expand the solution in power ofu as

u~s!5uu0~s!1u3u1~s!1u5u2~s!1¯ , ~A1!

f~s!5f0~s!1u2f1~s!1u4f2~s!1¯ . ~A2!

Then to lowest order inu, the continuum system reduced

d2f0~s!

ds2 2sin„f0~s!…50, ~A3!

2u
d2f0~s!

ds2 52
d2u0~s!

ds2 1Fl2S df0~s!

ds D 2

1~11a1!cos„f0~s!…Gu0~s!, ~A4!

wherea152bd /b.
The solution of Eq.~A3! is

f054 arctan„exp~s!…, ~A5!

with s5gAb(Z2uSGt).
By introducing Eq.~A5! into Eq. ~A4!, Eq. ~A4! reduces to

~l1a11L2!Q0~s!5sech~s!, Q0522uu0 , ~A6!

where

L252
d2

ds2 1@126 sech2~s!#
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is a Hermitic operator. Here we have neglected the effec
the dipolar field on the diffusion potential. As in Ref.@61#, to
solve Eq.~A6!, we need first to derive the complete orth
normal eigenfunctionscn(s) of

L2cn5«ncn ~A7!

as

«0523 and c0~s!5
)

2
sech2~s!, ~A8!

«150, and c1~s!5S 3

2D 1/2

sech~s!tanh~s!, ~A9!

«k511k2 and

ck~s!5
exp~ iks!

A~11k2!~41k2!

3~11k213ik tanh~s!23 tanh2~s!!. ~A10!

Now we can use this complete eigenfunctions to obtain
expression ofQ0 in Eq. ~A6! through a direct approach t
the study of soliton perturbation that have been recently u
by Yan and Tang@62# to solve a perturbed Korteweg–d
Vries equation. For this purpose, we need to assume that
Q0(s) and the right-hand side@R(s)5sech(s)# of Eq. ~A6!
should be expanded in a generalized Fourier integral as

Q0~s!5(
j 50

1

Q0
j c j~s!1PE

2`

1`

Q0~k!c~s,k!dk,

~A11!

where

Q0~k!5PE
2`

1`

Q0~s!c~s,k!ds, ~A12!

where P denotes the principal value of the integral und
consideration and the coefficientsQ0

j are given by

Q0
j 5E

2`

1`

Q0~s!c j~s!ds, j 50,1. ~A13!

We also have for the right-hand side of Eq.~A6!,

R~s!5(
j 20

1

R0
jc~s!1PE

2`

1`

R0~k!c~s,k!dk, ~A14!
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R0~k!5PE
2`

1`

R~s!c~s,k!ds, ~A15!

R0
j5E

2`

1`

R~s!c j~s!ds, j 50,1. ~A16!

Using then Eqs.~A11! and~A14! into Eq.~A6!, and note that
L2c0523c0 , L2c150, and L2ck5(11k2)ck , we then
multiply the resulting equation byc(s,k), c0(s), andc1(s)
successively, and then integrate it overs we obtain the fol-
lowing relations:

Q0~k!5
R0~k!

11a11l1k2 , ~A17!

Q0
05

R0
0

l1a123
, Q0

15
R0

1

l
. ~A18!

Since R0
15(3/2)1/2*2`

1` sech2(s)tanh(s)ds50, it implies that
Q0

150,

R0
05
)

2 E
2`

1`

sech3~s!ds5
p)

4
. ~A19!

Then from Eq.~A15!

Q0
05

p)

4~l1a123!
. ~A20!

From Eq.~A15!, the evaluation ofR0(k) leads to

R0~k!52

p~k211!sechS kp

2 D
2A~k211!~k214!

. ~A21!

Finally it comes that

Q0~s!5
F~s,l!

l1a123
, ~A22!

where
F~s,l!5
3p

8
sech2~s!2

3p~l1a123!

2
PE

2`

1`
sechS kp

2 D S k211

3
1 ik tanh~s!2tanh2~s! Dexp~ iks!

~k214!~11a11l1k2!
dk. ~A23!

Then using the properties of the principal value of an integral with the aid of the residue theorem, Eq.~A23! can be suitably
transformed into
3-15
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F~s,l!5
3p

8
sech2~s!2

3p

4 E
2`

1`
sechS kp

2 D S l1a1

3
2 ik tanh~s!1tanh2~s! Dexp~ iks!

~11a11l1k2!
dk. ~A24!

Finally, the expansion of the energy with the velocity leads us to the evaluation of

A~l!5
1

2 E2`

1`

F~s,l!sech~s!ds, ~A25!

which leads to

A~l!5
p

4 F3p

4
1

l1a1

2A11a11l
c8S 11A11a11l

2 D G , ~A26!

wherec8 is the digamma function.
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